
 
 

CHAPTER 1: INTRODUCTION 
Most research begins with a question about the world. To answer the question, data are 

collected. Data typically consist of numbers—often lots of numbers. The researcher’s challenge 
then becomes one of using the information in the numbers to make conclusions about whatever 
question the research was designed to answer. This book is a primer about how to do that. As we 
shall see, the process of statistics entails two main branches. Description statistics is the process 
of condensing the many numbers that comprise the data into fewer numbers—or graphical 
representations of numbers—that can be comprehended more easily by the human brain. 
Inferential statistics is the process of using the data to make conclusions about whatever question 
prompted the research. 

This chapter provides a brief synopsis of some of the main concepts that we will cover in the 
rest of the book book. In going through this example, you will see many instances of assertions 
like, “…and we will discuss this concept in more detail later in the book.” This is true: in this 
introductory chapter, we are short on mathematics, formalism, and detail. Instead, we are going 
for the broad picture and we try to appeal to your intuition and common sense within the context 
of a specific (although somewhat whimsical) example. We try also to introduce, again intuitively, 
some of the major concepts that will form the bulk of the remainder of the book. So as you make 
your way through the remainder of the chapter, remember that your goal is to get a general feel 
for what’s going on. For the moment anyway, don’t worry much about the details—there’ll be 
plenty of time for that later. 

Estatia 
In the mythical country of Estatia, consumer protection plays a leading role in tradition and 

culture. Accordingly, the Estatian Department of Consumer Protection (DCP) is a powerful and 
busy organization, always on the lookout to ensure that consumers are being treated fairly by the 
many large companies that bespeckle the land. 

Suppose one day, that the DCP receives a complaint: an Estatian consumer group expresses 
suspicion that one of these companies, the Acme Corporation’s Soup Division, is cheating its 
customers by shorting the soup volume in Acme’s one-liter (1,000-ml) soup cans. That is, 
according to the complaint, the manufacturing process that produces the one-liter cans is filling 
them with, on the average, slightly less than one liter of soup.  

How should the DCP go about testing the validity of this complaint? Although it has the 
capacity to measure the capacity of any given can with great precision, the DCP can't, of course, 
measure every can that exists. But they can address the problem in a well known fashion. They 
can select a random sample of soup cans from supermarket shelves across the country, measure 
the volume of soup in each of the sampled cans, and then use the measurements thus obtained 
from the sample to infer what’s going on more generally. 

Does Acme Short its Cans? Data and Conclusions from Samples 
To see how this might be done and what the resulting conclusions might be, suppose that the 

DCP obtains a random sample of cans and measures the volume of soup in each can. Table 1.1 
shows four possible outcomes, Cases I, II, III, and IV. Let’s go through them and consider how 
much the data from each case would convince us that Acme is indeed shorting its one-liter cans. 
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Case I 
Suppose  first that the data come out as depicted by Case-I data from a sample of n=5 cans 

(as you can see, we use “n” here and in general to denote the size of a sample).  
The first thing you might notice is that these five cans don’t all have the same volume; indeed 

the volumes of the five cans range from 969 to 1,012 ml. Why is this? Why don’t all the cans 
have identical volumes? Well, variability is just part of the manufacturing process—like all 
manufacturing processes, this one produces products that, while nominally the same, are not all 
exactly identical to one another. As we shall see, such random variability—in soup can volumes, 
in scientific data, and in the world in general—is one of the primary obstacles to unambiguous 
conclusions from data and therefore its existence is one of the primary reasons that you’re reading 
this book. We will return to a detailed consideration of variability in later chapters. 

Meanwhile though, what might we conclude from these five Case-I numbers? As a first step 
we might condense the information in them into a single number that represents them all together, 
i.e., into an average. At the bottom of the Case-I column we have indicated the most common 
form of average, the arithmetic mean—the sum of the scores (4,940 in this instance) divided by 
the number of scores (5 in this instance)—which turns out to be 988. 

So on average, the five cans in this Case-I sample contain 988 ml, or 12 ml less than the 
1,000 ml that Acme advertises. Should this raise suspicion in the Estatian DCP researchers that 
Acme is shorting its soup cans? Well maybe, but the evidence seems slim. We note, for instance, 
that one of the cans has almost the correct amount—993 ml—and another can has even more than 
1,000 ml. So intuitively, we’d conclude that, although the Case-I data are consistent with Acme’s 
shorting its one-liter cans a little bit, the less-than-1,000 mean might just come about as a result of 
random variation in the particular cans that we’ve happened to choose for our sample. 

Table 1.1. Weights (in ml) for Random Samples of Acme One-Liter Soup Cans. 

 Case I: 
n = 5 

Case II: 
n = 5 

Case III: 
n = 5 

Case IV: 
n = 100 

 978 878 990 978 
 969 869 984 969 
 988 888 991 988 
 993 893 988 993 
 1,012 912 989 1,012 
    978 
    992 
    . 
    . 
    . 

Mean: M = 988 M = 888 M = 988 M = 988 
Size of effect: Small Large Small Small 

Variability: Large Small Large Large 
Sample size: Small Small Small Large 

Does Acme short its cans? Can't tell Probably Probably Probably 

Confidence Interval: Where is µ? 988±14, i.e.,  
974 - 1,002 

888±14, i.e.,  
874 - 902 

988±2, i.e.,  
986 - 988 

988 ± 3, i.e.,  
985 - 991 
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Graphing the data 
At this point, we’ll take a brief side trip 

to introduce one of the most important 
axioms in the understanding of statistics, and 
indeed, almost anything involving numbers: 
the best way of understanding numerical 
information is almost always to represent the 
numbers in some sort of pictorial form, 
usually to graph them. Graphing is an art in 
the sense that the quality of the numerical 
representation is limited only by the 
imagination and creativity of the  grapher.  
Whereas tables, such as Table 1.1 have their 
places—for instance in a textbook, one may 
want to provide access to a set of exact 
numbers—figures are almost always better 
than tables for conveying gut-level intuition. 
In this book, we will introduce numerous 
examples of graphing data in quest of 
optimal understanding. 

And we do so beginning now. Figure 1.1 
shows a graphical representation of the Table 
1.1 data. For the moment, focus on Case I, 
on the left of the abscissa (horizontal axis). 
Above the “I” are five data points 
representing the five Case-I volumes from 
Table 1.1. We have also provided a 
horizontal line extending across from a 
volume of 1,000, which depicts the volume 
we’d expect assuming Acme is not shorting 
its cans. It will be useful to refer back to 
Figure 1.1 when considering the remaining 
three cases. 

Case II 
Now let’s suppose that the data turned 

out as depicted in Case II which, as with all Cases, I-IV, are shown in both tabularly (Table 1.1) 
and visually (Figure 1.1.) How might the DCP’s conclusions differ if the data turned out as in 
Case II compared to Case I? As you can see there’s still variability in the Case-II data, indeed it 
was constructed so as to have exactly the same amount of variability as in Case I. However, the 
Case-II mean is 100 ml less than the Case-I mean, i.e., it’s 888 rather than 988 ml. In fact, as you 
can see, each of the five volumes is exactly 100 ml less than its Case-I counterpart and every 
single sample member is below the 1,000 ml that we’d expect if Acme weren't shorting its cans. 
Possibly this still may not be enough to absolutely convince you that Acme is cheating, but at the 
very least it should be more convincing than the Case-I data. 

Case III 
Moving along, let’s consider the data depicted in Case III. The mean, 998, is the same as it 

was in Case I. Close inspection, however, reveals an important difference: there is less variability 
in the five cans’ weights than was true with the Case-I data. In fact, there is hardly any variability 

 
Figure 1.1. A graphical representation of the 
Table-1.1 data. The dots over each Case number, 
I-IV represent the individual data points (sample 
volumes in ml) from that case. The cases may be 
contrasted with respect to their means (Case I, III, 
and IV versus Case II), their variabilities (Cases I, 
II, and IV versus Case III) and their sample sizes 
(Cases I, II, and III versus Case IV). 
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Excel Aside. In the example, the numbers in 
Table 1.1 represent, of course, can volumes. But 
how did we create these numbers for this book? 
The answer is that we used a technique that is 
useful for acquiring insight  about statistics in 
many situations: that of random generation. 
This technique is centered on Excel’s RAND() 
function, which generates a random number 
between 0 and 1. Of course, we had to do more 
than that to actually generate the Table-1.1 
numbers, but we will defer a description of this 
additional work to a later chapter. 
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at all: within the precision of our measuring instrument, all five cans have very close to the same 
volume. What should we make of this? Well, our reasoning might go: Because all five of our 
sample cans are very close to 988 ml, we might suppose that all of the other population cans 
would also have volumes close to 988 ml. And, if that were true, then the entire population would 
have a mean close to 988 ml. So again, although this may not constitute absolutely convincing 
evidence that Acme is shorting its cans, it is intuitively more so than the Case-I data which have 
the same mean but more variability. 

Case IV 
Finally, let’s have a look at the Case-IV data. The big change here is that the sample is 

bigger—instead of sampling 5 cans, the DCP has sampled quite a few more, 100 cans. Note from 
Table 1.1 that the  first five cans in the sample have identical volumes to the five of Case I. 
Looking a bit more carefully at the data, it appears that the amount of variability is about the 
same in Case IV as it is in Case I (and indeed it is; again the numbers were generated that way). 
The mean of these 100 volumes is 988 ml, just as it was in Cases I and III. Again appealing to 
intuition, it seems that, although again not absolutely convincing, the Case-IV data provide more 
evidence that Acme is shorting its cans than do the Case-I data. The reason for this is that, all else 
equal, we have more faith in the results of the larger, Case-IV sample than in the results of the 
smaller Case-I sample—if, for instance, the sample size were so big that it comprised essentially 
the entire population, our conclusion would be unambiguous. More generally, all else (i.e., mean 
and variability) being equal, the larger the sample size, the more convincing the conclusion. 

A Summary and a Pseudo-Equation 
What have we learned from all this? The Case-I data comprise our baseline. Given the Case-I 

data, we conclude that the evidence for Acme’s shorting their cans, while not nonexistent, isn't 
really very convincing. 

The data from Cases II, III, and IV all, for different reasons, provide greater evidence for 
shorting than do the Case-I data. To recapitulate: 
Case II provides more evidence because the mean volume is lower. Let’s state this in a slightly 

different way: The magnitude of the lowered-mean effect implied by shorting is greater. 
Case III provides more evidence because there is less variability in the numbers. 
Case IV provides more evidence because the sample size is greater. 

In short, three properties of our sample—“effect” size indicated by the sample mean, 
variability of the sample numbers, and n, the sample size—all contribute systematically to our 
belief that Acme is shorting its one-liter cans. The comparative states of these three properties are 
indicated at the bottom of Table 1.1, and we can summarize their contributions to conclusions in 
the form of what we will dub a “pseudo-equation”—an equation-like formulation that comprises 
only rough, intuitive concepts rather than actual numbers. It is, 

€ 

Belief in shorting =  Magnitude of effect
Amount of variability

n = sample size
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 

So the idea here is that the DCP’s eventual “Belief in shorting” is influenced by the three 
factor we’ve just sketched: It’s greater to the degree that “Magnitude of effect” is bigger 
(consider Case II compared to Case I), to the degree that “Amount of variability” is low (Case III 
compared to Case I) and to the degree that sample size is large (Case IV compared to Case I). In 
later chapters, we will formalize this pseudo-equation in various ways. 
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Samples, Populations, and Hypotheses 
At this point it will be useful to provide some definitions and terminology. In general, we 

want to make conclusions about a population—in this instance, about the population of Acme 
one-liter soup cans that are sold in Estatia. To do this, we collect data from a random sample 
drawn from the population, just as we have in this example, and we use these sample data to infer 
what’s going on with the population. There are many characteristics of a population, about which 
we might draw inferences from the corresponding characteristics of the sample data. In this 
instance, we are interested in the population mean. The population mean is a somewhat abstract 
entity that refers to the mean value of all Acme one-liter cans that exist, ever have existed, or ever 
could exist, using Acme’s present manufacturing process. Equipped with this definition, we can 
reformulate the conclusion that “Acme is shorting its one-liter cans” to, “the population mean of 
Acme one-liter cans is less than 1,000 ml.” 

The term “population mean” is cumbersome. Fortunately, there’s a shorter term for it: the 
Greek version of the letter M, or µ. Likewise, a sample mean is, as indicated in Table 1.1, simply 
referred to as M.  Now we can formalize the DCP’s decision-making task as one of deciding 
between two competing hypotheses: 
• The “chance-effect” hypothesis: The population mean, µ, of Acme one-liter cans 

equals 1,000 ml. Any “effect” observed from our sample that is discrepant with this 
hypothesis—in this case in the form of a sample mean, M, turning out to be less than 
1,000 ml—comes about just by chance. 

• The “real-effect” hypothesis: The population mean, µ, of Acme one-liter cans is less 
than 1,000 ml. Any “effect” observed—in this case in the form of a sample mean, M, 
turning out to be less than 1,000 ml—comes about, at least in part for this reason. 
And with this formalism, we can now recast “Belief in shorting” in our pseudo-equation as 

indicating support for the “real-effect” hypothesis and against the “chance-effect” hypothesis. 

Hypothesis Testing and Confidence Intervals 
In the preceding section, we have described the elements of what is an enormously popular 

procedure in many sciences. Called hypothesis testing, it is used in the vast majority of studies in 
the social sciences as well as in other sciences, particularly medicine and ecology, as a means of 
transiting from the data collected in some experiment to conclusions about the question that the 
experiment had sought to address. Despite its popularity however, a growing cadre of scientists 
has questioned its usefulness. The reasons underlying this doubt will be described in detail later in 
this book. For the moment, we want to similarly describe the elements of an alternative means of 
understanding the meaning of a data set, that of confidence intervals. 

As should be apparent, hypothesis testing involves a binary decision; roughly speaking, a 
decision is made in favor of one hypothesis or the other. Note also that as we’ve just seen, the 
conclusion involves something about population means: the population mean is either concluded 
to be below the advertised value of 1,000 ml or it’s not so concluded. A confidence interval takes 
a more direct approach asking, essentially: What is the population mean of interest? If we knew 
the answer to that question—e.g., in this instance, if the DCP somehow knew the population 
mean of Acme’s one-liter cans—then the issue would be dealt with. 

The sample mean, M, and the population mean, µ  
As we shall demonstrate formally in a later chapter—and, as intuitively seems quite 

reasonable—a sample’s mean, M, is the best estimate we have of µ, the population mean of the 
population from which the sample was drawn. So in Cases I, II, III, and IV, the best estimates of 
the population mean of Acme’s cans are 988, 888, 988, and 988 respectively. So in each of the 
four cases, according to our best estimate, Acme is indeed shorting its soup cans. 
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Confidence intervals 
How good are these estimates though? 

Take Case I. Although 988 ml, the sample 
mean is really and truly our best estimate of 
µ, we certainly wouldn't bet a lot of money 
on the proposition that µ is exactly 988 ml. 
However, we might be willing to bet on the 
proposition that µ is somewhere in the 
general vicinity of 988 ml—and in addition, 
the more expansive the definition of “general 
vicinity” the more money we’d be willing to 
bet. 

Let’s be a little more formal about these 
notions in the form of what’s called a 
confidence interval. A confidence interval is 
an interval around a sample mean such that 
the population mean that we’re concerned 
with falls within that interval with some pre-
specified likelihood. For the moment, we’ll 
point out a couple of things about confidence 
intervals. 

• In case you haven't realized it already, small confidence intervals are good: the 
smaller the confidence interval, the more information we have about the sought-after 
population mean’s location. In the extreme, a confidence interval of zero width, 
would imply that we knew perfectly where the relevant population mean lay—it 
would be equal to M, the sample mean. 

• Confidence interval size is influenced by two of the same things that we discussed in 
conjunction with hypothesis testing. In a particular, a confidence interval is small to 
the degree that (a) the original variability is small and (b) to the degree that the 
sample size is large. In addition, it’s influenced by the pre-specified probability that 
the sought-after population mean falls within the interval, i.e., a confidence interval 
that captures µ with 99% probability is wider than one that captures µ with 95% 
probability. 
At the bottom of Table 1 are confidence intervals for the four cases. These same confidence 

intervals are also represented graphically in Figure 1.2. Take this opportunity to study these 
confidence intervals carefully in order to see how they correspond to the conclusions made within 
the context of hypothesis testing: the general idea that you should be internalizing is that those 
cases, II - IV, that lead us to be quite sure that Acme is shorting its soup cans are also those cases 
in which our confidence interval leads us to believe that the can volume population mean, µ, is 
less than 1,000 ml.  

Probability 
Across the various topics that we’ve been  discussing runs a common thread, that of 

probability. Although we haven't stated it as such, the uncertainty with which our conclusions 
have been stated has implied that they are being made probabilistically rather than unequivocally. 
We’ve indicated, at least implicitly, that under this or set of circumstances, we can probably 
conclude that Acme is shorting its cans. Similarly, we have asserted that a confidence interval 
includes the sought-after population mean with some probability. 

 
Figure 1.2. Confidence intervals. For each of 
Cases I-IV, we have indicated the sample mean as 
a black circle. The confidence interval around the 
mean is represented by the vertical lines extending 
above and below each mean. You can see that 
small, i.e., good confidence intervals come about 
with small variability (Case III) and/or a large 
sample size (Case IV). 
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Probability theory 
At first glance, this dependence on probability may seem disquieting. How are we supposed 

to make any kind of unambiguous conclusions if we are always hedging our bets with 
probabilistic statements? The answer to this question is twofold. The first answer is that because 
of the variability of almost everything in the world, unambiguous conclusions are almost 
impossible to come by. Get used to it; that’s just the way things are. The second answer, a 
somewhat more optimistic one, is that probability is a precise mathematical discipline, which 
means that we can at least make probabilistic conclusions that are themselves unambiguous and 
that mean the same thing to everyone. To use a reasonably widely understood example, if I say 
that a coin is biased, such that its probability of coming up heads is 70-30 rather than the usual 
50-50, that’s a probabilistic statement—but it’s also a meaningful one that, for instance, would be 
useful to you if, for instance, you were planning to toss that coin to decide who’s going to pay for 
dinner tonight. In the next chapter, we will delve into the mathematical formalism of probability 
theory. 

Probability and Statistics 
Probability and statistics are often referred to as “two sides of the same coin.” Essentially, 

probability is all about deduction. Probability comes up when we deal with the question: “Given 
some situation, what are the likely consequences?” So for instance if the situation tossing a fair 
coin six times, we might ask something like, “what is the probability that the consequence of this 
exercise is that all six tosses result in a “head?” Or, in a research setting, we might ask, 
“Assuming this hypothesis to be true, what is the probability that we get this particular outcome?” 
Statistics on the other hand deals with the opposite issue: given a particular data set, what can we 
infer about the possible situations—i.e., theories—that may have generated this situation? 

Of critical importance is that probability theory lies at the heart of understanding data 
analysis. In order to acquire skill and artistry at the art of data analysis, it’s necessary to 
understand probability theory reasonably well. So it is to probability theory that we turn in the 
next chapter. 


